Single Channel Strain Gauge Interface - SDI-12 Device

OEM Customised Product

Last Updated: Nov 2014

Introduction

The **NP-STRAIN-1** is an intelligent general purpose strain gauge interface suitable for direct connection to strain gauges and load cells. The device connects to any suitable logger supports SDI-12 digital communications and is fully integrated into the free Keynes Controls Q-LOG data display and recording software.

The product is available as a stand-alone PCB for inclusion into 3rd party products or as a complete sensor complete with an enclosure.

The **NP-STRAIN-1** is User Programmable and can supply results in both raw or engineering unit format. A precision temperature sensor input is supplied for applications where compensation is required.

The sensor monitors the bridge excitation during the measurement and compensates automatically for any excitation variation during the data conversion process.

OEM Applications

The NP-Strain-1 PCB can be supplied customised for third party applications. The PCB can be changed to allow for screw hole PCB mounting, choice of termination and pre-set configurations.

Further Information

The **NP-STRAIN-1** strain can be used to provide force on a strain gauge based load cell using the following formula in Q-Log.

Fig-1

NP-STRAIN-1 circuit board

$F = \frac{(e_o)(F_{fs})}{\left(\frac{mV}{V}\right)(E_x)}$

F units Newton's

Installation & Operation

Bridge Type

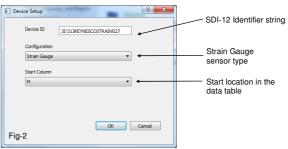
The installation and operation of the NP-Strain-1 sensor is straight forward.

Point-slope form

rollit-slope lollil

$y - y_1 = m(x - x_1)$

Features


Support for 120 to 1 K Ohm Gauges
Ensemble Average Measurements - Noise reduction
External bridge completion
Precision Temperature Sensor
User Programmable Scaling Factors
SDI-12 Digital Communications
Extended SDI-12 Address Support: 0-9, a-z
16 Bit Precision ADC

Low Power - minimised self heating effect Engineering and raw data values Fully Integrated into Q-Log Software Firmware upgrade facility

The image opposite shows both the NP-STRAIN-1 circuit board and the waterproof housing.

The sensor has been designed for operation in harsh environments and still has the ability to be easily installed in the field.

No special installation tools or plugs are required simply since all signal and sensor cables simply push into the cable clamps mounted on the front and back of the unit.

Q-LOG Device Setup Window

Download a copy of Q-Log

Image is for marketing purposes only

The supplied card may differ slightly from the image below.

Further information at:

http://www.aquabat.net/QLOGFree/qlogv2.html

Communication

View looking into port

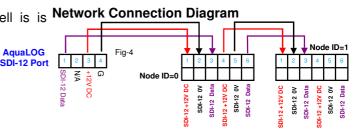
Data

SDI-12 [

12 +12V SDI-12

Fig-3

Port Pin-out


Connect the strain gauges and bridge completion resistors to the sensor input port, see Figures 7, 8 view looking into port through 10 for sample wiring options. Network Connection Connect the SDI-12 digital port on the sensor to the SDI-12 port on the USB-SDI12 media converter or SDI-12 port on a suitable data logger. Default ID = 0 unless specified on the sensor.

Physical Installation

Mount the NP-Strain-1 interface as close to the gauge/load cell is is Network Connection Diagram practical for minimum noise and optimum results

Wiring Diagram

The image opposite shows the wiring schematic for connection the NP-Strain-1 onto a SDI-12 network.

SDI-12 Port

Technical Specifications

Specifications are accurate at the time of publishing but can be changed without notice.

but can be changed without notice.		
Power Supply	10 -18 V	
Current	2 mA at acquisition 10 uA standby	
Input Range	+/- 8mV Other ranges on request	
SDI-12 Port	1 x Port Version 1.03	
Max update rate	1 sec	
Cable Clamp Size	2 mm diameter	
Bridge Excitation	3.3 V DC - standard	
Raw Value	Raw data mV/V	
Engineering Value	micro-strain, mV/V User defined	
Range	User defined, depends on sensor installed	
Temp Sensor	Thermistor	
Thermistor Type	3 K EC95 F type material 10K 3A1 Betatherm	
Calibration	Steinhart-Hart Built Pre-defined Set at manufacture	
Accuracy	0.05 Deg -8 to 25 Deg C	
Range	-30 to + 60 Deg	
Units	Deg C / Deg F mv/V, User Defined	
RMS Noise (Typical values) PCB Dimension	less than 1 uV/V less than 0.01 Deg C	
Length	60 mm	
Width	19.7 mm	
Max depth	11.2 mm	
Cable Entry	1 m Screw terminal	
Number Channels	1	
Gauge Resistance	120 - 1K Ohm	
Gauge Factor	User Defined	
ADC	16 Bit	
Statistics		
Strain	Max, Min	
Temp	Max, Min	

Example AquaLOG SDI-12 Commands

[D] 0M! 0D0!

- get data ID=0 returns 2 values strain, temp

[F] 0M! 0D1!

0MM1!

get Max Strain, temp values returns 4 values into cells F...I. reset max strain for sensor ID=0

Part Numbers

NP-Strain-1-SDI-12

Strain gauge interface - SDI12

digital network option

NP-Strain-1-RS485

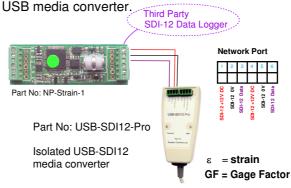
Strain gauge interface - RS-485 digital network option

Bridge Zero Offset Correction

The NP-Strain-1 sensor does not zero correct the bridge and assumes the User will correct the error in post processing of the

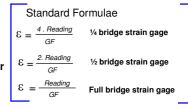
Fig-5

Physical Dimensions


Temperature coefficient of Gage Factor (TCGF)

This is the change of sensitivity of the device to strain with change in temperature. This can be compensated for in the calibration equations but it is recommended to be post process corrected in any data analysis.

PC / Laptop Data Acquisition Solutions

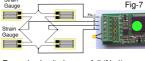

OEM Version PCB

The image below shows a simple PC based strain gauge data acquisition application created using the NP-Strain interface cards and the Keynes Control

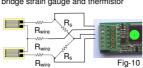
Strain Equations

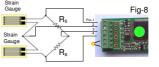
The following equations are used by the NP-Strain-1 card to determine the measured strain.

Default Configuration

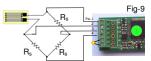

The NP-Strain-1 interface uses the 3 K Ohm thermistor by default. The following command can be used to test the NP-Strain-1 sensor.

Start measurement: 0M! 0D0!

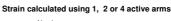

returns 012 - 1 sec response 2 values returns 0+strain+temp


Bridge Circuit Options

The images below show how the different bridge options are connected to the NP_Strain-1 card



Example circuit shows a full (N=4) bridge strain gauge and the



Example circuit shows a half (N=2) bridge strain gauge and thermistor

Example circuit shows a quarter (N=1) bridge strain gauge and thermistor

$$= \frac{4(e_o)}{(N)(GF)E_x}$$
N = 4 for full bridge
2 for half bridge
1 for quarter bridge

E_x = Bridge Excitation = 3.3 V ɛ = strain e_o = Output Voltage N = Number of effective arms

= Gage Factor

Calibration

micro-Strain

800

1200

1400

GE

Supported SDI-12 Commands

Example circuit shows a half bridge strain gauge (N=2)

with 3 wire interface - reduces cable length effects

	digital notwork option	
Command	Response	Description
aM!	a0tt2	2 values in time tt given by stats
aD0!	a+0.123+25.5	Strain and temperature values
aD1!	a+0.1299+0.1201+25.9+25.0	Statistical values max S, min S, max T, Min T
al!	a13KEYNESCOPRESR001	Identification string
aXUTu!	au	Temperature units
aXCn,xxxx	an,xxxx	$\label{eq:calibration} \begin{array}{ll} \text{Calibration data} & \text{(No temp compensation - default)} \\ \text{E = [0] + [1]*s} \\ \text{with read back.} \\ \text{s is in mV/V} \\ \text{E is in micro-strain} \end{array}$
aXFt,nn,xxxx!	at,nn,xxxx	Ensemble Averaing Command t → filter type (should be 0 - mean only) nn → number of filtered values 1 to 12 xxxx → interval between beasurment * 200ms
aXTHMT(01)	a+0/1	$ \begin{array}{ll} \mbox{Thermistor type selection} \\ \mbox{$0 \rightarrow $ default = 3.3 \ K$ } \mbox{Material type F - Model EC95} \\ \mbox{$1 \rightarrow $ 10 \ K \ Ohm$ } \mbox{Model $10K3A1$ Betatherm} \\ \end{array} $

v = 6.1435x + 520.06

Example Calibration Commands

Scale = 6.1435 and offset = 520.06

Results are now in engineering units.

aXC1,scale!

Example - Using the sample test data above and Set calibration factors for device with ID = 3 to

Output (Eng Units) = 6.1435, mV/ $V_{in} + 520.06$

SDI-12 Commands are 3XC1,6.1435! 3XC0,520.06!

aXC0,offset!

143.2313 175.786 1600 The following data points were measured under test conditions using a strain gauge calibrator.

Use a simple linear regression to determine calibration curve used to convert measured calibration curve used values directly into

Calibration Factor Calculations

Raw Data

mV/V

110.6765

45.567

Display the sample test data in a Microsoft Excel

Use the Trend Line format operations and select 'Linear' and 'Display Equation on Chart'.

The equation shown is used to convert raw data into engineering units.

A quadratic calibration equation can be used should this be proved suitable

Copyright Keynes Controls [®] 2014-2015