Q-Log Data Recording Software

Advantages:

- Free download for up to 10 Intelligent Sensors per network
- 36 sensors or interfaces on the professional version software.
- · Operates with the Keynes Controls SDI-12 / RS-485 media converts
- · Easy expansion using USB Ports
- Graphical User Interface for sensor configuration and data display
- · Terminal screen to capture events & sensor diagnostics
- Digital Panel Meter & Chart Plotting for simple data examination
- · CSV file format for easy upload into a spreadsheet
- · Enables multiple network strings to be supported into a single PC
- · Up to 256 Columns of data for each log file
- Multi-instance Operations

Data Recording & Configuration Tool For Intelligent Instrumentation

Options for SDI-12 & RS-485 Digital Networks

USB-SDI12-Pro media converter

User-Defined Chart

1.0 Introduction

Q-Log is the Keynes Controls Data Recording and Display software and has been designed solely for use with intelligent sensors. The software operates as a stand-alone package and uses the Keynes Controls SDI-12 and RS-485 model dongles for communications to the sensors.

This software has been developed by Keynes Controls with the aim of ensuring data integrity and to remove where possible the Users requirement to understand programming techniques.

Q-Log gives the User a simple Windows environment for setting up and using intelligent sensors supporting the SDI-12 or RS-485 digital communications interface. Data is stored into a log file in CSV format for simply examination by a spreadsheet for uploading into a database. A series of panel meters and trend plots can be configured to display real-time results.

Q-Log uses a series of configuration files to define the setup and operation of a sensor. Any sensor or third-party interface that supports industry-standard commands can be integrated into the software without any requirement for complex upgrades.

Q-Log is modular and new applications can be added or custom developments undertaken on request.

A Quick User Guide can be found on page 30.

Data Recording & Display Software

Page No		Description
1	1.0	Introduction
3		System Requirements Copyright notice Log File Location Installation Instructions
4	2.0	System Expansion
5	3.0	Software Windows Layout
6	3.1 3.2	Selecting the number of Panel meter Displays Panel Meter Data Selection
7	4.0 4.1 4.1 5.0 5.1	Network Dongle Installation - RS 485 or SDI-12 USB-SDI-12 Media Converter Wiring Diagram USB-RS485 Media Converter Wiring Diagram Setting the COMM Port Number into Q-Log Network Type Selection - SDI12/RS485
8	6.0 6.1	Scanning for Devices / Sensors Device Setup
9	7.0 8.0	Starting & Stopping Data-Acquisition Operations Console Screen
10	9.0 10.0 10.1	Comm Port Selection & Sample Rate Selection Setting the Sample Rate Sensor Selection
11	10.2 10.3 10.4	Manual Log File Layout Configuration Instrument Identifier Strings AquaLOG data into Q-Log
12	11.0 11.1	Charts Chart Configurations - Y Axis Units - X Axis Units
13	12.0	LCD Panel Meter Display
	12.1 12.2	Displaying Data Panel Meter Display Layout Options
14	12.3 12.4	Panel Meter Titles/ Units On / Off Assigning Engineering Units
15	13.0	Log File
16	14.0	In-Place-Inclinometer Data-Acquisition System
17	15.0 15.1	VibWire-108 based Q-Log Data Recording Application VibWire-108 Multi-instrument application
18	15.2	Example VibWire-108 Data-Acquisition System Configuration
19	16.0 17.0	Sensor Configuration Files Multi-Parameter Sensor Configuration - PIEZO-RM Example
20	18.0	VibWire-101-based Large Channel Count Q-Log Application
21	19.0	Example of a Multi-instrument Network System.
22	20.0 20.1 20.2	GSM Remote Monitoring Modem Configuration Modem Model Number
	20.3	GSM Setup Options
23	20.4 20.5 20.6	Identify the Modem Port Remote Data Logger Telephone Number Number of columns in the results file
24	20.7 20.8 20.9	Automatic Data Downloads Automatic Download Options Hourly Downloads - Continuous Operations
	21.0 21.1 21.2	Data on demand Data Amounts Data Correction Operations
	22.0	Common Mobile Phone Network Error
25	22.1 22.2	Common Modem Errors Example Download Options
26	23.0 23.1	Formula Processing Example 1 - Crack Meter - Raw data Format Hz
27	23.2 23.3 23.4	Updating Data Values SDI-12 & RS485 network GSM Data downloads Latest data values show in the Variable List Example 2 -VibWire-108 configured to give results in digits formula modification
28	24.0	Example - Single VibWire-108-SDI12 Vibrating Wire Sensor Application
29	24.2	Selecting the VibWire-108 data options.
30	25.0	Strain Gauge Application Bridge Circuit Options Worked Example - Setting the calibration factors into the NP-Strain_1 card
01	20.0	Engineering Units
32	27.0	Strain Gauge Application - Q-Log Formula Processing
33		QLog Quick Installation & Set-up Guide

Supported Operating Systems:

Q-Log supports Windows XP, 7 and 8 Microsoft operating systems.

Minimum System Requirement:

1 G Hz Intel Processor 1 Gb RAM - any hard disk for data file storage.

Log File location:

Mydocuments/Q-Log/Log where Mydocuments is the standard Windows directory

Manual Download:

The complete package can be downloaded free of charge at:

http://www.aquabat.net/downloads/QlogSetupv1207.zip

Directory Location:

The files after installation can be found:

C:/'NAME'/user/My Documents/QLOG

where name is Identifier for the computer.

IMPORTANT INFORMATION

For Microsoft 7 and 8 operating systems the installation Account Type has to be 'Admin' as full access to the User file system for storage of the files.

USB-SDI12-Pro Media Converter Connections

Administrator account is required for software installation.

No. 1 - 4 I-P-I Sensor Installation

For 1 to 4 I-P-I sensors simply connect them directly to the USB-SDI12-Pro network bus. The USB-SDI12-Pro device powers the sensors directly from the USB port of the PC without any external power supply.

Software Installation:

The Q-Log software loads automatically into pre-set directory structure.

Make sure the User account being used for the installation of the software is of type 'Admin' -

- · If this is not the case create a User account with Admin See Control Panel User Accounts
- Contact suitable IT personnel for installation rights.

Double-click on the QlogSetupv1207.zip file and follow the standard Windows software installation instruction

Setup Screen:

P QLOG Setup: Installation Options						
Check the components you want to install and uncheck the components you don't want to install. Click Next to continue.						
Select components to instal:						
Space required: 14.2//B Cancel Nullsoft Install System v2.46 Next >						

Press the 'Next' Button to start the installation Press the 'Finish' Button at the end of the installation.

The information in this document is correct at the time of printing. Keynes Controls Ltd withhold the right to make changes without notice. Please contact Keynes Controls Ltd for the latest details regarding this product

Copyright Keynes Controls Ltd © 2014 - 2015.

2.0 System Expansion:

Q-Log is a fully-configurable general purpose data-acquisition system for sensors and interfaces deployed on the SDI-12 and RS-485 digital networks. It is ideally suited to fixed installations with distributed networks into multiple sites; sensor testing in a lab and for testing sensors and systems in the field.

In order to maintain data integrity and to simplify any post-processing operations, Q-Log runs as a separate program for each network that is installed. Should any network fail due to a problem with a remote sensor or cabling damage, then this will not prevent the rest of the networks from operating. Running separate networks isolates the PC from any problems and these can be fixed, removed or updated as and when required.

There is no practical limit to the number of different network strings that can be used.

The image below shows 4 USB-SDI12/RS-485 media converts in use:

The professional Q-Log Software enables up to 36 sensors or instruments on a network

Select image to download a free copy of Q-Log

Operates on all Windows Laptops / PCs / Tablets

The simplest form of data-acquisition system that can be created using Q-Log is by using the handheld media converter as shown below. A single device is perfect for testing sensors in the office, or lab, or for testing individual network strings when in the field.

Depending on the version of Q-Log in use, up to 10 sensors or interfaces can be used with the free version software; or up to 36 sensors using the professional version of the software on each network string.

A key feature of the flexibility of Q-Log is its ability to operate with any third-party sensor, or to interface without the requirements for complex upgrades.

Example Network Type Installation Only - Free Version

Q-Log uses a series of configuration files to define its operation and these can be appended or edited to allow third-party sensors not already supported.

All sensor configuration operations can appear in the tool menu system for easy access.

The only stipulation for sensor integration into Q-Log is that a sensor uses an ID string and industry-standard command sets.

3.0 Software Windows layout

The details below demonstrate where to find the Q-Log configuration options:

'Device Setup' Window Instrument ID String 'Q-Log Data Recording' Window: I QLog Logger Configuration File Description Scan for Devices Start Column for first data item The Q-Log software scans the network wice List View Variable View OK Cencel in the Log file. and lists the identified instruments List of device Cells Edit automatically. The network to be scanned ID String 'Device Calibration ' Window is that specified in the 'Device Setup' Window. Sensor Offset teal to D..F Setup Confi 2021 20MDRESSSDRESLIPO2 **Calibration Factor** Sensor Gain **Calibration Factor** HELLO WORLD (Example of use see page 34) Display Identified Instrument/sensor list. Logging Configuration Window: Enter Comm Port identified for USB media converter QLog Red Data Recording Sample Rate QLog View Edit Hel Log Filename Start Logging Stop Logging New Automatically create Log file name Auto Assigr OK Cancel Network Type Selection - SDI-12 / RS485 GSI Logging Y Current record:1 Current Time: 10:30:05 Next Log 10:30:15 Auto Assign: Title bar showing the Data Acquisition Status Message Select the 'Auto Assign' menu This status line only appears when the data acquisition operations are active. option. The data log will be automatically configured for all the Title bar showing the Data Acquisition Status: No Data identified instruments. The User has the facility to manually adjust The status bar is clear indicating no data acquisition operations. the Log file layout. Logging N 'Manual Commands' Window: ? × Manual Commands Send **Console Window** CELL 3 Terr CELL 5 CELL 3 23 Jul 2 CELL 3 CELL 5 CELL 3 3M! DLY 300 3D0! al 2012, 10:31:30 : Gathering Dat 3MI DLY 3000 END 23 Jul 2012, 10:31:40 : Gathering Data CELL 3 CELL 5 CELL 3 MI Stop DLY 30001 **GSM Remote Monitoring Configuration** END 23 Jul_2012, 10:31:50 : Gathering Dat 23 Jul 20 CELL 3 CELL 5 CELL 3 3M! DLY 3000 3D01 END 23 Jul 20 CELL 3 Configuration Window for the automatic reporting operations when used with a GSM View results from the manual commands directly inside the modem. Set the data download schedule is 'Terminal Data' Window. configured here. 2012, 10:32:00 ; Gathering Dat CELL 3 CELL 5 CELL 3 3M! DLY 3000! 3D0 END 23 Jul 21 CELL 3 CELL 5 CELL 3 3M! DLY 300 Stop ul 2012, 10:32:10 : Gathering D An example of the use of the Auto Assign option is shown in the VibWire-101 multi-channel data-acquisition system on page 20.

Configuring a Vibrating Wire data-acquisition system can be a complex task. Using the 'Auto Assign' option can speed up this process considerably. A single data log file is created with the columns compactly laid out and with the correct titles and units.

The 49 Channel VW data-acquisition system uses a spreadsheet format to assign the columns. The Auto Assign option calculates the cell positions D..AI = 32 cells, AJ.. AY = 16 cells and AZ..BA for the single channel VW-101. 2 cells are used for the single channel VW101 with Cell AZ for Freq and Cell BA for temperature.

3.1 Selecting the number of Panel Meters:

The following Windows are used to setup the Panel Meter Display:

Number of panel meters to display real-time values

3.2 Panel Meter Data Selection:

'View Data' Window

3	Select	Variable			2
Panel 1					
Panel 2	Col	Variable	Name	Units	Select
13	A 🗐		Record	no.	Select
	🔲 B		Date	Y/M/D	Select
	🗖 C		Time	h:m:s	Select
	D		not used		Select
	📝 E	AquaDAT 8DE Start(2)	Channel 0	mV	Select
	📝 F		Channel 1	mV	Select
	📝 G		Channel 2	mV	Select
	🔽 H		Channel 3	mV	Select
	I 👿		Channel 4	mV	Select
	👿 J		Channel 5	mV	Select
	👿 К		Channel 6	mV	Select
	👿 L		Channel 7	mV	Select
	🔳 M	AquaDAT 8DE End(2)			Select
	🔲 N				Select
	0				Select
	P				Select
	Q				Select

'Select Variable' Window

Use this Window to select the data items to be displayed in the panel meters

4.0 Network Dongle Installation - RS485 or SDI12

When the USB-SDI-12 or the USB-485 media converts are installed onto the USB port of a Windows operating system PC, or laptop, then a message similar to that below appears on the task bar. This message shows that the dongle has been correctly identified by the operating system and the driver is installing.

4.1 USB-SDI-12 Media Converter Wiring Diagram

4.2 USB-RS485 Media Converter Wiring Diagram

5.0 Setting the COMM Port Number into Q-Log

Once the media converter USB dongle has been correctly identified by the operating system it can be used by the Q-Log software.

Q-Log currently uses a single USB dongle and this gives the User up to 256 columns of data to be recorded at any one time.

From the Q-Log Tab select: 'Configuration' menu option.

The 'Logging Configuration' Window will appear.

Data Log File Name & Storage Location The dongle converts the USB port to a serial port for use with the sensors. The USB media converter is identified in the Windows operating system as a COMM port.

To find out which port is being used by the USB dongle go to:

Control Panel \rightarrow System \rightarrow Device Manager

There are minor differences in the screens that appear when accessing the Device Manager Window from the different versions of the operating system, however they all show devices identified similar to the image below:

COM 6 is shown identified by the operating system as being in use

COM 6: This is the port number used in the Q-Log setup to identify the media converter dongle port.

This image is taken from the 'Properties' tab of the driver for the USB dongle.

The window shows the dongle installed and operating correctly.

Network Type Selection 5.1

Select the 'Mode' button

The network type options SDI-12 & RS-485 options will appear.

Select the correct network type from the list.

Press the '**OK**' button to confirm the network type.

The network type is printed on the label of the media converter

Type

Options: SDI-12/RS485

6.0 Scanning for Devices / Sensors:

The Q-Log software scans the network for the intelligent sensors or interfaces and displays each device in a table.

As each device is identified its ID number and response tag is shown in the table below. It is important that all sensors have a unique ID number in order for them to be correctly identified.

From the 'Q-Log' Tab select: 'Scan for devices' option.

A table similar to that shown below will appear:

			4	
	QLog Logger			
	QLog View			
	Device Lot View Variable View List of devices 0 0 00033KEYNESCOBAROx002 1 5	DH	Setup	Confia)
Sensor ID Number	2 3 11/11/3KEYNESCOBAR0xx002 5 6	H.L	Setup	Config
In this example a	9 GBB13KEVNESCOIPINCL011	К.М	Setup	Config
barometer with ID =	4 Sensor response			
	message			
	e 9 h			

Device List ' Tab Q-Log Recorder Window

6.1 Device Setup:

1. Select the 'Setup' Tab and the following window will appear.

Device Setup		? X	
Device ID 31!31	3IMPRESSSPRESUR037		
Configuration			
Impress pressure sens	;or 🗲		file options.
Start Column			
D	•		
	ОК	Cancel	
			1

'Start Column' Selection Tab

Example: Storing data from a Dual-Axis I-P-I with ID=8 into a data file. This example is based on the 'List of devices' shown in the screen above.

The Dual-Axis In-Place-Inclinometer returns **3** data values by default. These are: X Axis (mm/m), Y Axis (mm/m) and Temp in Deg C.

Store the data into the 6th column of the data log, i.e., Column F where Column 1 = A.

Device ID	8I!813KEYNESCOIPINCL011
Configuration	
Inplace Inclin	ometer 🔹
Start Column	
F	•

Sensor ID=8 I-P-I Identifier

Standard Dual-Axis Configuration File

Store X-Axis data into Column F

Y-Axis will be stored into column G and Temp into column H. Additional parameters are stored into the next consecutive cell.

The image below shows the Q-Log main menu

QLog	Recorder		
QLog Co Sca	View Edit Hel	p Formulas	
Sta Sto Ch Ma Au Sav GSI	rt Logging ip Logging ange Address inualCommand to Assign re M	able	Record Date Time Frequency0-0 Frequency0-1 Frequency0-2
G		-	Frequency0-3 Frequency0-4

The Q-Log software has the network type assigned

Scan for devices makes locating and using the various sensors and interfaces a simple operation.

Once a sensor has been identified by the scan, a list of different configuration files supported by the sensor can be selected from the '**Configuration**' Tab.

Some sensors such as single axis I-P-I, have only 2 data items to send across the network, such as angle and temperature. For these sensors only a single Configuration file option is available. Any unwanted data can be ignored in the data table.

Other devices such as the VibWire-108 sensor interface have many optional configuration files due to the number of Vibrating Wire and temperature input sensor configuration options that can be used.

A VibWire-108 using only 2 sensor inputs will respond faster than a unit set for 8 sensors so choosing the best file to suit the application will speed up the measurement operation.

Action

Select the 'Configuration' Tab.

A list of configuration files will appear in the form of a pull down menu. Select the most suitable file.

Storing Data

8

Select the 'Start Column' tab:

A list of column locations in alphabetical order appears in the form of a pull-down list.

Select the 'Column storage location' letter for the start of the data storage.

Once the Configuration File and Column Storage parameters are set then:

Select 'OK' to store the new option.

7.0 Starting & Stopping Data Acquisition:

Before starting any data-logging operation make sure that all devices on the network have been identified using the 'Scan for devices' option.

From the Q-Log Tab select: 'Start Logging' option.

The blue status LED's on the media converter should start to illuminate when data is being transmitted.

The \checkmark mark will appear by the 'Start Logging' menu option.

Stopping Data Logging:

Select the 'Stop Logging' Tab - see image below.

The status LED's on the media converter will no longer illuminate and the tick mark will disappear.

8.0 Console Screen:

The Q-Log is provided with a Console window to show each command and response made by the sensors at each acquisition operation.

The window is ideal for diagnosing sensor setup problems.

The window saves only the last 1000 messages and instructions to the sensors.

Activating the Console Window

Select View - Console

The 'Console' Window shows the response from the sensors on the network or from the modem when when undertaking remote recording operations.

Start Data Acquisition

	QLog Recorder	
	QLog View Edit Help	las
	C Chart 2 C Chart 2 A Chart 3 C Chart 3 Chart 4 C Console D E F	R D T Fr Fr
I Terminal Data		
3001 END 23 Jul 2012, 10:31: CELL 3 CELL 5 CELL 5 CELL 5 CELL 5 CELL 5 CELL 5 CELL 5 CELL 3 CELL 3 C	30 : Gathering Data 40 : Gathering Data 50 : Gathering Data	
DLY 3000! 3D0! END 23 Jul 2012, 10:32: CELL 3 CELL 3 CELL 3 3M! DLY 3000! Stop Stop	:10 : Gathering Data	E

Console Window

9.0 Com Port Selection & Sample Rate Selection:

Select the 'Configuration' menu option And the 'Logging Configuration' Window will appear.

Enter the 'Com Port' number for the USB media converter being used.

Logging Configuration Window

Logging Time Period

10.0 Setting the Sample Rate

Select the 'Configuration' Tab from the main Q-Log menu. The 'Logging Configuration' Window will appear.

Select the 'Logging Interval' Tab. A list of possible samples rates will appear in the pull-down menu list.

Select 'OK' button to store the new sample rate.

The sample rate is set the same for all the sensors on a network.

Important Note: The fast sample rate is limited to the speed in which the slowest sensor responds.

A .. IU - Excel spreadsheet format.

10.1 Sensor Selection

Once the device on a network have been identified, then the different configuration options can be selected using the pull down menu list that will appear under the 'Configuration' title from within the 'Device Setup' Window, see above. The device options appear in this pull down menu list regardless of the type of network being used.

For example (See image above), a piezometer has been identified as ID=3 on a network. To adjust the sensor to use different engineering units, such as water height in units of mmH²0, mH²0, inches, then simply select the sensor configuration items from the available options list The 'Configuration' menu system will list options available for the identified sensor automatically.

10.2 Manual Log File Layout Configuration:

There may be occasions where the manual configuration of Log file is required, for example, when adding a new sensor for a short period time. The columns in the Log file are identified like columns in a spreadsheet.

D = the first column to which User data can be assigned.

To manually adjust the location of a sensor or interface in the data log file:

Select the device to be configured from the 'Device List' Tab of the Q-Log window:

The 'Device Setup' window will appear.

Select the new starting position for the data using the 'Start Column' pull down menu.

Once the new cell position is selected press the 'OK' button to save the new configuration.

Important Note: Take care to check any configuration changes do not affect the recording of other devices on the network. Setting the same recording cell for multiple devices will corrupt the Log file.

Product:	ID string:	10.3 Instrument Identifier Strings
VibWire-101 VW sensor interface VibWire-108 VW sensor interface PIEZO-RM water level sensor Barom-SDI-12 barometer I-P-I AquaDAT sensor interface Single channel strain gage	13KEYNESCOVW101A011 13KEYNESCOVW108A016 13KEYNESCOPRESR001 13KEYNESCOBAROMR003 13KEYNESCOIPINCL005 13KEYNESCOAQUDAT008 13KEYNESCOSTRAIN027	The key to identifying a new sensor on a network is by the Identifier String. The identifier string is unique for each sensor type and instrument. This parameter has to be known for the specified sensor to be used within Q-Log. If this parameter is missing then the sensor will not be identified and its data will be ignored by the software.

10.4 AquaLOG data into Q-Log

The AguaLOG data logger stores data into an internal data table that references data in exactly the same way as the common spreadsheet packages such as Microsoft Excel. The first three values in each record are reserved and store the record number. date, and time respectively. The first free position in the AquaLOG data table is column 'D'.

AquaLOG Data Logger

The image opposite shows the 'Variable List' from the main Qlog Window and also demonstrates how the data values at cell positions in the AguaLOG data file are referenced in the 'Qlog' Variable List.

The AquaLOG log file cells are mapped to the same cell location in the Qlog Variable List.

Example

The example above shows Cell D in the AquaLOG data table is mapped to Cell D in the Qlog Variable List.

AquaLOG Data Table Layout

А	В	С	D	E	F	
Record No	Date	Time	736.01	1223.5	2334.7	

When data is downloaded from the AquaLOG it is stored as a CSV (Comma separated variable) text file.

	QLog View	Edit Help Variable List Formulas]			
	Col	Variable	Name	Units	Current	*
	A		Record	no.		
	B		Date	Y/M/D		
" <u> </u>	С		Time	himis		
			Frequency0-0	Hz	736.01	
	E		Frequency0-1	Hz	1223.5	
	F		Frequency0-2	Hz	2334.7	
	G		Frequency0-3	Hz		
	H		Frequency0-4	Hz		
	I		Frequency0-5	Hz		
	J		Frequency0-6	Hz		
	К		Frequency0-7	Hz		
			Taman 0.0			*

Device Setup		? <mark>x</mark>
Device ID	3I!313IMPRESSSPRESUR037	
Configuration		
Impress pressu	re sensor 🔹	
Start Column		
D	•	
	ОК	Cancel

Example - Start column is D for a piezometer.

11.0 Charts:

The Q-Log software supports charts to show the overall trend for a specified data item in the Log file.

The free version of the software is limited to 4 simultaneous charts. Q-Log is not meant to be an in-depth analysis tool, which is best done in a spreadsheet or similar software.

11.1 Chart Configuration:

To make sure the software remains simple to operate the X- and Y-Axis auto-scale.

Y-Axis Units:

The Y-Axis engineering units displayed on the chart are set in the 'Variable View Tab' of the Q-Log window (see details on page 11). The engineering units are manually set so some knowledge of the application will be required in order to make sure these parameters are correct.

Chart Data Points:

The maximum number of data points that can be displayed into a single chart = 1000.

X-Axis Units

The X-Axis is always the time axis. The scale will depend directly upon the specified sample rate.

Press the '**Select Cell**' Tab. The 'Select Variable' Window will appear.

Un configured Chart

The example above demonstrates the selection of 'Chart 3' for the next data plot.

Once a chart is configured it can be left running in the background. Additional charts can be configured at any time.

For slow sample rates set the number of points to 'Current Log'

The example above demonstrates the selection of 'Channel 1' for an 8-Channel differential input AquaDAT sensor interface to be displayed in a chart.

Using the 'Select Variable' window:

Press the '**Select**' button for the channel to appear in the Chart.

The Chart Window will appear.

12.0 LCD Panel Operation:

Data values from any single network can be viewed as a series of panel meters, or as a limited number of real-time traces.

The data that is displayed is limited to values from sensors on a single network only. If there are two networks connected to a PC, one being SDI-12, and the other RS-485, then only data values from the SDI-12 network can be observed together. Then data from the RS-485 network can be viewed by running another version of Q-Log and having it setup to operate with the other sensors.

The example below shows a single AquaDAT interface configured for 8-Channel Differential Inputs with an ID = 2:

LogLogger				
g View Edit				
evi Chart riable View				
ist of devices				
2II213KEYNESCOACODAT008	AquaDAT 8 Diff Inputs	EL	Setup	Config
(⁻				

12.1 Displaying Data

After the network scan and all of the instruments or sensors have been identified, it is then possible to select the parameters that are to be displayed. Q-Log does not display all the possible parameters of which it has the capability of storing and requires the User to select the values of interest.

Minimising the number of windows in the package ensures that the PC resources being used for data recording and display purposes are never overstretched. The data recording and displays will update reliably and this leaves the computer free for other applications.

1. Select the 'View' tab

The options to select panel meter or chart display are shown.

12.2 Panel Meter Display Layout Options:

Q-Log can be configured to display real-time values in the form of a series of panel meters. The panel meters are displayed in the form of a grid. Each panel meter can show the real-time data value, Channel Name and Units.

Setting the number of Panel Meters:

Using the View Data Window:

Select the 'Edit' Tab

Select 'Number of panels' tab

The list of possible panel meter display options will appear.

The display options show Row x Column. 4 X 2 = 4 rows 2 columns.

The example opposite shows a 4 x 2 Display

The example windows opposite were created based on using a single AquaDAT sensor interface configured for 8 differential inputs.

4 x 2 Panel

12.3 Panel Meter Titles - Units - On / Off:

The panel meter display can be configured to show a 'Title' and 'Units' for each parameter being displayed.

The settings for the Panel Meter display are globally set for each page.

Switches Titles On/Off on the Panel Meter Window:

Record

Date

The LCD panel meter display can be configured to display or remove the data item Title and Units.

Using the 'View Data' Window:

Select the 'Titles' option :

Select Variable

Col

A

With tick mark selected the Title will be displayed.

2

Select

Select

Select

Ur

Y/M/D

Edit Links Vumber of panels → Colours → ✓ Titles ↓ Units Save	Channel 1 mV
Channel 2 mV	Channel 3 mV
Channel 4 mV	Channel 5 mV
Channel 6 mV	Channel 7 mV
Logging Y Current record:1577 Current Tim	e: 15:31:20 Next Log 15:31:30

12.4 Displaying Engineering Units

The engineering units that are displayed on the screens are simply entered into the table opposite as text. The sensors used to acquire the data have to be suitably configured into the correct engineering units. The example is going to insert engineering units for use with an AquaDAT with ID = 2 for channel 0.

From the 'Select Variable' Window

Select the 'Units' cell to be configured.

Cell to be configured

This cell can be edited and values deleted just like a cell in a spreadsheet.

Type the new 'Units' title into the specified cell:

In this example Channel 0 units is set to 'mV' .

Col	Variable	Name	Units	Select
A		Record	no.	Select
В		Date	Y/M/D	Select
C		Time	h:m:s	Select
D		not used		Select
V E	AquaDAT 8DE Start(2)	Channel 0	mV	Select
V F		Channel 1	mV	Select
✓ G		Channel 2	mV	Select
V H		Channel 3		Select
V I		Channel 4	mV	Select
V J		Channel 5	mV	Select
V K		Channel 6	mV	Select
V L		Channel 7	mV	Select
M	AquaDAT 8DE End(2)			Select
N				Select
0				Select
P				Select
Q				Select

Type 'mV' in the 'Units' cell for Channel 0.

The image opposite shows mV entered for channel 0 of

Repeat the 'Units', 'Titles' update for all the required cells.

Press the 'OK' button to store the new units.

C		Time	h:m:s	Select	
🕅 D		not used		Select	From th
V E	AquaDAT 8DE Start(2)	Channel 0		Select	
🔽 F		Channel 1	mV	Select	
🗸 G		Channel 2	mV	Select	Select t
V H		Channel 3		Select	
V I		Channel 4	mV	Select	
V J		Channel 5	mV	Select	Cell to I
🗸 K		Channel 6	mV	Select	
V L		Channel 7	mV	Select	
M 🗐	AquaDAT 8DE End(2)			Select	This co
🕅 N				Select	11113 00
0				Select	spreads
🕅 P				Select	•
🗐 Q				Select 👻	
	(OK Cancel			I ype th
					La Ila'a

13.0 Log Files

Data is stored in up to 256 individual columns as a comma-separated variable text file suitable for importing directly into a spreadsheet. The individual columns are identified in the same format as used by columns in a spreadsheet. Column D is the first User-defined location for data storage. Columns A .. C are already used by Q-Log to store Record Number, Date and Time.

Each time a new configuration is made and the data recording operations are started then a new heading line is written to the Log file. This action ensures that all related data is grouped together and that data values are clearly identified.

The Log file sample below shows how the log file will appear after a configuration change.

The column titles written to the Log file are those entered into the specified cells from the 'Variable List' tab from the main Q-Log window. The example below shows a Piezometer with the name 'Thames River 1' with units in 'm'. The Thames River 1 sensor water height data is stored into column D.

Remote Data Logger System

The diagram below shows the minimum system hardware required to create a remote data logging system.

Remote Data Logger

14.0 In-place Inclinometer Data Acquisition System:

The diagram below shows how simple a PC-based inclinometer data-acquisition system can be put together using the USB media converter unit and the I-P-I range of sensors. All of the current inclinometers connect to a network and send values directly in engineering units into data recorders or PC / Laptop data-logging systems.

Angles and temperature values are all acquired and converted into engineering units within the sensor and then transmitted digitally across the network. This minimises noise and errors due to cabling losses and also has the advantage of fast installation and simple maintenance.

Theory of Operation:

Adding additional sensors to the system is very easy with Q-Log. Just plug the new sensor onto the network and 'Scan for devices'. The new sensor will be identified and the results appended to the log file.

Should a number of new devices be required and they are located some way from the PC then the addition of a new network may be the best option. Insert a new USB media converter into a spare USB port in the PC and start a further copy of Q-Log to identify and store results from the new sensors.

Each time Q-Log is running a new Log file separate from any other Log file is created. Each Log file is limited to 256 columns in order to simplify any data processing operations.

Auto-Zeroing

The I-P-I sensors are difficult to zero on installation. The Keynes Controls range of I-P-I can be automatically set to a starting angle of 0 degrees at the start of an acquisition operation and the results thereafter shown in the charts or on the LCD panel meter display.

15.0 VibWire-108 based Q-Log Data Recording Application:

The following example demonstrates a simple 8-unit VibWire-108 application that can be created using a single media converter and the **Q-Log** data recording and display software.

In this application the SDI-12 network has been chosen for data transmission.

The VibWire-108 ID number for each instrument can be setup using the Q-Log software, however, it is faster to configure the instruments manually using the keyboard.

Consider the system shown above to be wired-in and ready for installation. The wiring installation details for the Vibwire-108 can be found in the User manual.

15.1 VibWire-108 Multi-instrument application:

A common application for Q-Log has traditionally been in the creation of distributed vibrating wire data-acquisition systems using the VibWire-108 interface.

It does not matter which network type is being used since all operations are transparent to the User and have a common interface.

Based upon the simple example above using 8 x VibWire-108 instruments, all the User has to do to create the application is to install the instruments and connect them to a suitable network media converter.

- 1. Start Q-Log
- 2. Make sure the USB media converters have been suitably identified and then 'Scan for devices'.

Q-Log will identify the instruments on the network and produce a list of devices in the 'Variable List' tab (see details on page 18).

The 'Variable List' shows a generic configuration of the instruments, and after they have been identified then all that is required is to set the suitable configuration option into the software.

To simply any application set the VibWire-108 to operate with 8 sensors and simply select the correct number of channels for storage by Q-Log. The software ignores unwanted data values should they be sent across the network. To optimise the system for speed then the VibWire-108 instruments should be set to return only the number of data required by Q-Log.

15.2 An Example of VibWire-108 Data-Acquisition System Configuration:

The following configuration details are based solely upon the example vibrating Wire data-acquisition system shown on page 17.

The Windows below show what

Stage 1 - Identifying the instruments on a network:

Devi	ice List View Variable View Formula				
List	of devices				
А	ID String	Configuration	Cells	Edit	Edit
0	01013KEYNESCOVW108A016			Setup	Config
1	1I013KEYNESCOVW108A016			Setup	Config
2	2 J013KEYNESCOVW108A016			Setup	Config
3	3I013KEYNESCOVW108A016			Setup	Config
4	4 J013KEYNESCOVW108A016			Setup	Config
5	5I013KEYNESCOVW108A016			Setup	Config
6	6 J013KEYNESCOVW108A016			Setup	Config
7	7J013KEYNESCOVW108A016			Setup	Config
8					
0					

Select 'Scan for devices' menu option.

After a few seconds the Device List will update and show the updated table. The View Device table now shows the generic name for each device along with the ID number.

2. For each identified device press the 'Select' button.

From the menu system that appears choose the option that matches the instrument configuration.

3. Repeat the operation to configure all of the identified instruments.

The example considers the VibWire-108 instrument only, however, any other instrument or sensor on the network is identified and configured in the same way.

Select the 6 VW + 6 Temp sensor option

For manual configuration simple press the '**Config**' button and move the start position of the data to a new location.

The new configuration setting will take effect as soon as the 'OK' button is pressed.

4. Press the 'Auto Assign' menu option.

After selection of the '**Auto Assign**' menu option then Q-Log automatically assigns the column locations for each data item being sent from the instruments. The Each column is identified in exactly the same way as that used in a spreadsheet.

Column D in the results data table is the first free column into which User data can be stored. It should take just a few seconds to configure the Log File.

16.0 Sensor Configuration Files:

The images below show a sample of the device configuration files available with Q-Log. The configuration files can be edited to adjust their operation. Editing is done in any package that supports XML file structures.

To add a new device to Q-Log simply edit one of the example files and store under a new name. All configuration files use the *.xml extension.

1	2	3
Identify	13KEYNESCOBAROMR003	
Integration period (ms)	500	Set
Results string	ACE	Set
Calibration offset		Set
Temperature offset (hundreths)	0.0	Set

Barometer Configuration File

I-P-I Configuration File

The following example shows the parameters transmitted by a dual-axis I-P-I on receiving a 'Start Measurement' instruction. The parameters are preset into the instrument.

The parameters A, B and E refer to mm/m - X Axis, mm/m - Y Axis, Temp Deg C.

This version of the configuration file I-P-I returns 3 data values and these will be stored into consecutive columns in a Log file.

Edit Sensor Configu	ration		?	
1		2	3	
1 Identify	13KEYNESCOVW101A011			:
2 16Ch Mux	0		Set	

VibWire-101 with 1 x MUX-16/32 Expansion Unit Configuration File

17.0 Multi-parameter Sensor Configuration

Some sensors such as the PIEZO-RM range of sensors support a range of different configuration options to set parameters such as local gravity, engineering units, level offsets etc. Some management parameters such as the calibration date, range etc. may be required to be viewed by the User before deploying the sensor.

To observe management details such as the calibration date. Then

PIEZO-RM Water Level Sensor

From the 'Device List' Tab of the Q-Log Window

Press the '**Config**' button adjacent to the the chosen sensor. See image below.

<mark>QLog</mark> Lo og V	ogger	0+10000×	
List of			
0			
1			
2			
3			
4 4	113KEYNESCOPRESR001	Piezo 10 m range	Setup Config
5 5	113KEYNESCOPRESR001	Piezo 10 m range	Setup Config
6			
-			

Property	Value	tool	Set
dentify	13IMPRESSSPRESUR03	7	
Gravity	9.80665	Tool 💌	Set
Pressure Units	3	Tool 🔻	Set
Temperature Units	0	/ mi	Bar
Local Offset	0.000000	ftH	20
Local Setting	0	int	120
Reverse output	0	ha	
Trim On	1		
Trim Offset	0.000008	psi	
Serial number	0000	m	nH2O
Calibration Date	01JUN2010	cm	H2O
Caibration Date Next	01JUN2011	De	fault
Range	+0.000000	Un	do
Max Overrange	+0.000000	Ca	ncel
Output Precision		Tool 🔻	Set

PIEZO-RM Configuration

For the PIEZO-RM range of sensors and no matter which digital network the device is deployed on, then the Configuration Window shown above will appear.

Select '**Tool**' button adjacent to the parameter to be updated.

All of the additional configuration details that are shown in the menu system above are stored in the instrument configuration file.

Other sensors will have similar configuration Windows containing different options.

18.0 VibWire-101-based Large-Channel Count Q-Log Application:

The application below demonstrates how the Q-Log software is used with the VibWire-101 instrument to create a large-channel count vibrating wire sensor data-acquisition and display solution. The VibWire-101 is shown connected to the MUX-16/32 unit to offer either a 16 x 4-wire and 32 x 4-wire sensor interface. A single channel VibWire-101 is included to demonstrate how single-channel devices are handled within a large-channel count application.

ID = 5 1 x 4 Wire VibWire-101 ID = 316 x 4 Wire VibWire-101

Use the manual for the VibWire-101 to obtain the correct wiring details for this instrument and the MUX-16/32 unit.

VibWire-101 Vibrating Wire Data-Acquisition System:

The individual VibWire-101 instruments are configured using the terminal port and RS-232/USB media converter. The VW-101 can only currently have a single sensor defined internally by the Q-Log. When the MUX-16/32 units to create large channel solutions then this device returns the results for each channel in digits (Hz²). The formula processing in Q-Log adjusts the readings for engineering units.

Each instrument is

Once the 'Scan for Devices' operation is completed then the 'Device List View' Window will appear as shown below.

The 'Auto-Assignment' button automatically aligns the data table once the inputs are defined.

bg	View Edit				
Den	vice List View Variable View Form	ula			
Lis	st of devices				
A	ID String	Configuration	Cells	Edit	Edit
0	0I/013KEYNESCOVW101A011	VW101 with 16x2 multiplexer	D.AI	Setup	Config
1					
2					
З	31/013KEYNESCOVW101A011	VW101 with 16x1 multiplexer	AJAY	Setup	Config
4					
5	51013KEYNESCOVW101A011	VW101 Single Channel	AZBA	Setup	Config
6					
7					
8					
0					

Download the VibWire-101 manual here

http://www.aquabat.net/downloads/VibWire101UserManv3.pdf

Example of the configuration Window used to to assign the VW sensor and temperature sensor parameters required to obtain engineering unit values back from the interface:

Devk	e List Vie	w Variable View				
	Col	Variable	Name	Units	Current	
1	A		Record	no.	0	
2	в		Date	Y/M/D	0	
3	с		Time		0	
4	D	Frequency Ch0(0)	Frequency	Hz	2535.4	
5	E	Frequency Ch1(0)	Frequency	Hz	0.5852	
6	F	Frequency Ch2(0)	Frequency	Hz	762.6	
7	G	Frequency Ch3(0)	Frequency	Hz	764.3	
8	н	Frequency Ch4(0)	Frequency	Hz	2100.8	
9	I	Frequency Ch5(0)	Frequency	Hz	o	
10	J	Frequency Ch6(0)	Frequency	Hz	2089.8	
11	к	Frequency Ch7(0)	Frequency	Hz	758.9	
12	L	Frequency Ch8(0)	Frequency	Hz	767.1	
13	м	Frequency Ch9(0)	Frequency	Hz	1207.8	
14	N	Frequency Ch10(0)	Frequency	Hz	1208.9	
15	0	Frequency Ch11(0)	Frequency	Hz	1209.4	
16	P	Frequency Ch12(0)	Frequency	Hz	762.5	
17	Q	Frequency Ch13(0)	Frequency	Hz	1207.2	
18	R	Frequency Ch14(0)	Frequency	Hz	2532.1	
19	s	Frequency Ch15(0)	Frequency	Hz	1204.9	
20	т	Temperature Ch0(0)	Temperature	Celcuis	28.78	
21	U	Temperature Ch1(0)	Temperature	Celcuis	27.05	
22	v	Temperature Ch2(0)	Temperature	Celcuis	29.01	
22 23	v w	Temperature Ch2(0) Temperature Ch3(0)	Temperature	Celcuis	29.01	

VibWire-101/VibWire-108 Sensor Interface only.

19.0 Example of a multi-instrument network system:

The example below demonstrates how the 'Device List' tab will appear for the sensors shown above. These instruments have been identified after a network scan and the data log configuration setup using the 'Auto Assign' operation.

Notice how the data from separate sensors goes into consecutive columns in the results table. The data assignment has been made automatically but can be adjusted manually if required.

og	View Edit				
Devi	ice List View Variable View				
List	of devices				
Α	ID String	Configuration	Cells	Edit	Edit
0	0I13KEYNESCOIPINCL005	I-P-I Dual Axis + Temp	DF	Setup	Config
1	1I13KEYNESCOIPINCL005	I-P-I Dual Axis + Temp	G.I	Setup	Config
2	2I13KEYNESCOBAROMR003	Barometer mH20 + Temp Deg C	JK	Setup	Confid
3	3I13KEYNESCOAQUDAT008	AquaDAT 6 DE Inputs	LQ	Setup	Config
4	4I13KEYNESCOPRESR001	Piezo 10 m range	RS	Setup	Config
5	5I13KEYNESCOAQUDAT008	AquaDAT 8 DE Inputs	TAA	Setup	Config
6	6I13KEYNESCOPRESR001	Piezo 10 m range	ABAC	Setup	Config
7	7I13KEYNESCOSTRAIN001	1 Channel Strain + Temp	ADAE	Setup	Config
8	8I13KEYNESCOSTRAIN001	1 Channel Strain + Temp	AFAG	Setup	Confic
9	9113KEYNESCOSTBAIN001	1 Channel Strain + Temp	AHAI	Setup	Config

GSM Remote Monitoring

The Q-Log application has been designed and tested using Telit GSM modem. Other models can be used however the Hayes commands used to setup the modem may be different from those shown below.

The free version of Q-Log is limited to a single remote data logger outstation.

Modem Configuration

The following Hayes commands are used by the Telit GSM Modem

Modem : 9600 baud, 8 bit, no parity

PC Modem		Remote Logger	
AT+IPR=9600	baud rate	AT+IPR=9600	baud rate
AT#SELINT=0	original interface mode	AT#SELINT=0	original interface mode
		AT&S0=1	auto answer
AT&D2	disconnect on DTR low	AT&D0	ignore DTR
AT&W	save	AT&W	save

Modem Model Number

Telit GT-864 modem : Tried and tested modem that has been proven to be reliable

Modem Installation

To have the ability to download data upon demand then the modem on the remote logger has to be continually powered. The power management is now quite efficient

GSM Setup Options

To activate the GSM remote data download features

Select Qlog - GSM from the pull down menu. The GSM Dialog Window shown below will appear.

20.4 Identify the Modem Port

The modem Comm Port used by the PC is identified in the operating system using the Control Panel.

The example below shows how to identify the modem comm port using the Microsoft Windows 7 Operating System.

PC is identified from the Control Panel - System - Device manager - Ports (Com & LPT)

The options may vary slightly between different versions of the Windows Operating System but is essentially the same as that shown below:

One of the devices that will be identified will be the GSM modem.

In the example Com Port 8 is shown to be used by the GSM modem.

The Com Port number is use by the modem will change depending on what hardware is in use by the PC running Q-Log.

20.5 Remote Data Logger Telephone Number

Enter the Modem telephone number into the 'Phone Number' text box.

It is common for data SIMMS to be supplied with 2 x telephone numbers. Make sure the 'Data Number' is correctly identified and entered into the text box on the GSM Dialog Window.

Select 'OK' button to store new parameters.

Dialog	ि <mark>×</mark>	
Phone Number		Domoto Modem SIMM Data Number
Priorie Number	07584135065	Remote Modern Silvilvi Data Number
Times	14:00:20 Days	07854135065 is a data number for the SIMM.

20.6 Number of columns in the results file

The number of columns of data that can be used to store data from the remote instrumentation can be defined.

Setting the number of columns simplifies any future data analysis operations and makes the files easier to handle in packages such as Excel. Set the number of columns to be slightly larger than the number of data items returned by the remote data logger system.

The example shows how to configure the log file for 40 columns of data.

Columns = 40 Columns = 40 Columns 40 Once Daily

20.7 Automatic Data Downloads

Q-Log has the ability to download data from the remote data logger automatically or on demand.

Data can only be downloaded from a remote data logger so long as the modem connected to the logger can make a network connection. In any Keynes Controls remote data loggers this is generally done by keeping the GSM modem powered continually.

20.8 Automatic Download Options

The data download options within Q-Log have been kept simple to make sure they are reliable.

The options for automatic down load are:

- 1. One download per day at preset time
- 2.. Two. downloads per day at preset time

The aim of the download is to make sure the data is extracted reliably from the remote location. It is best practice to get the data out as often as is practical in order to minimise data loss.

Each option can be set to operate for any day of the week and if the configuration is left unattended it will repeat the operation week in ,week out until adjusted to stop. The days of the week for the download are set using the 'Day' Tab.

20.9 Hourly Downloads - Continuous Operation

3. Hourly download.

The hourly download option takes priority over any other setting. Once activated Q-Log downloads data each hour any will do this continually until stopped. This is the most reliable of operations and makes sure data is extracted fast and efficiently. The latest recorded data is downloaded and appended to the Q-Log data files.

21.0 Data on demand

Data on demand is obtained by setting the first download time tab to a couple of minutes later than the current PC time.

On detecting the new download time the call will be made from the data logger PC running Q-Log to the remote data logger. Information will be extracted and transferred to the data log file. All the data from the previous download until the latest record in the data logger will be extracted and stored to the log file.

21.1 Data Amounts

The most reliable form of data transfer is small data blocks at any one time. The GSM mobile phone network is most likely to allow small amounts of data without any error but may be limited by the network provider to prevent large downloads.

21.2 Data Correction Operations

Once a remote data connection is made to the logger unit Q-Log examines the data logger log file and extracts only the latest data that has been stored. Data is sent in blocks of 5 records so should the network fail only a minimum amount of data needs to be re-sent.

22.0 Common Mobile Phone Network Error

The most common error observed in the remote transfer of data and shown in the 'Terminal Port' Window is:

- No Carrier Most common occurrence is due to the failure of the mobile phone network and shows no data transfer possible
- Solution: If data has been sent previously and 'No Carrier' message is displayed then leave everything also and wait for next scheduled download. The problem should be automatically solved by the network supplier. To try a new download immediately simply adjust the time control to start the download immediately.

22.1 Common Modem Errors - Failure to Communicate

The most common cause of failing to configure the system for remote downloading is by installing the wrong type of SIMM into one, or both of the modems used by the PC and remote data logger unit.

The modems supplied directly by Keynes Controls for remote data applications always uses the Hayes Command set for configuration and testing. The Hayes command set contains a command that can identify the type of call being made from specified SIMM installed in a modem.

Command: AT+CRC=<mode>

Set command controls whether or not the extended format of the incoming call indication is used.

Para mater <mode>

0 - disables extending format reporting (factory default).

1 - enables extended format reporting.

When enabled, an incoming call is indicated to the TE with unsolicited result code:

+CRING:<type>

instead of the normal RING.

where <type> - call type:

DATA FAX - facsimile (TS 62) VOICE - normal (TS 11)

22.1 Additional Commands

Command: AT+CRC? Read command returns the current value of the parameter <mode>.

Command: AT+CTC=? Test command returns supported values of the parameter <mode>.

22.2 Example Downloads

Timed Download

] Dialog	Chevron Land	8 ×
Phone Number	07584135065	
Times	02:00:00	Days
Serial Port	21:00:00	☑ Monday ☑ Tuesday
8	Connection Interval	Vednesday
Columps	Hourly	V Thursday
40	Twice Daily	V Friday
	Once Daily	Saturday
		v sunday
	ОК	Cancel

Example - 2 data downloads daily at 02:00:00 AM and 21:00:00 each day except on Monday.

Hourly Download

Times 02:00:00 Days Monday Gerial Port 16:00:00 V Tuesday	
ierial Port 16:00:00 v Tuesday	
5 Connection Interval Wednesd	зу
Hourly Thursday	
20lumns O Twice Daily Friday	
Once Daily	
Sunday	

Example - Hourly download continuous operation.

In this example the hourly download takes priority over any other setting.

Data will be downloaded each hour commencing from the start of the setting of the 'Hourly' Option. The first download will be at the start of the next hour.

23.0 Formula

Q-Log can be configured to undertake simple formula processing. Any complex data processing operation is best suited to post process analysis using third party packages such Microsoft Excel, Matlab or Maple.

The main benefit for Q-Log applications is that it keeps all operations simple. There are no complex manuals to study and the screens are intuitive. The various formulae are entered under 'Formula' tab from the main 'Q-Log' Window, see the image on page XX.

One of the most common applications is to convert vibrating wire sensor details into engineering units.

VW Sensor Interfaces Data Operations

The VibWire-108-SDI12 and VibWire-108-RS485 model interfaces are intelligent devices and can have individual sensor inputs configured to supply frequency data values as Hz, Digits (Hz²), or engineering units.

The VibWire-101-SDI12 and VibWire-101-RS485 models support many more channels than the VibWire-108 interfaces, but in order to minimise the hardware configuration they are restricted to supply frequency data values in Hz or Digits only.

User manual: http://www.aquabat.net/downloads/VibWire101UserManv3.pdf

Take care when deciding on the formulae to be used in any calculation that the data type being used is of the correct type.

The worked example in the next section shows how to convert VW crack meter frequency value into engineering units.

Example - Data Record

Record No	Date	Time	D	E	F	where
1200	29012013	11:00	2245	1124.6	2267.1	D = Crack Meter Data Hz
1201	29012013	11:10	2345	1126.7	2268.1	example data values only

23.1 Example 1 - VW Crack meter Raw Data Format: Hz

A single vibrating wire crack meter is attached to a VibWire-108-SDI12 interface unit and connected to a laptop. The VibWire-108 has been configured to supply data values in units of Hz.

The data values

Engineering Units: **mm** (milli-meter).

The crack meter as a F_0 reading at installation of 2330 Hz, F_1 is current sensor frequency from the results table, and the sensor Calibration Const = 0.0795.

The crack meter data is configured to use Cell D in Q-Log variable list.

Formula used in the data processing:	$E = K (F_1^2 - F_0^2) / 1000 mm$	
Q-Log formula	W = K*((D*D) - (2330*2330)) / 1000 mm	where W = Cell storing results
Formula simplifies to	W = 0.000795 * ((D*D) - (2330*2330))	where T = K / 1000 = $0.0795/1000$

where W = cell location in the Formula list.

There is no restriction to where the formula can be inserted into the table. It is good practice to keep the formula variables away from the immediate data variables that change after each measurement.

23.2 Updating Data Values

The formula processing operates for both GSM connected data loggers and for network based sensors. The Q-Log software only supports SDI-12 and RS-485 digital networks.

SDI-12 & RS-485 network

The data processing using the formula is undertaken automatically after each data acquisition operation.

To plot the calculated values make sure the processed cell is selected.

GSM Data Downloads

Data that is downloaded is processed as it is read by Q-Log. Since the remote download operation is not continuous the data value most often shown in the 'Variable View' Window is the latest value that has been downloaded.

23.3 Latest data values show in the Variable List

Looking at the 'Variable View' tab data will appear as

Q	QLog Log Devid	g Logger View ce List Vie	r Edit ew Variable View Formula					
		Col	Variable	Name	Units	Current	<u>^</u>	
	1	A		Record	no.	0	=	
	2	в		Date	Y/M/D	0		Example Data
	3	с		Time		0		Value from VibWire Interface.
	4	D	Frequency Ch0(0)	Frequency	Hz	2345		
	5	E	Frequency Ch1(0)	Frequency	Hz	0.5852		
	6	F	Frequency Ch2(0)	Frequency	Hz	762.6		

The W cell is shown in this example but in practice any cell can be used. It is good practice to keep the calculated values away from the raw data values. This reduces the chance that the data can be mis-interpreted.

Cell W = 0.000795 * (D*D - 2330*2330)

QLog Recorder The 2330 value is the F0 value QLog View Edit Help Device List Variable List Formulas Alternatively Col Variable Name formula V V = 2330 can be set as a constant Crack Meter w = 0.000795 *((D*D) - (2330 * 2330)) X Y and the formula can be changed to: z AA Cell W $= 0.000795^{*}((D * D) - (V * V))$

ſ	QLog Record	er				The	e calculated	cell now	shows	the
	QLog View	Edit Help				eny	gineering units	5 III IIIII.		
	*									
	Device List	Variable List Formulas								
				1						
	Col	Variable	Name	Units	Current ^					
	V			Hz 5.5749						
	W		Crack meter	mm						
	X			mm						

23.4 Example 2 - VibWire-108 configures to give results in digits formula modification

Units = Digits (Hz^2) Units : meters

Formula becomes W = 0.000795*(D -(2330 * 2330)) or V = (2330 * 2330)/1000 = 5428.9

this formula will give the same answer as the above example but with the vibrating wire sensor undertaking some of the calculations. Take care to set the units correctly.

24.0 Example - Single VibWire-108-SDI12 Vibrating Wire Sensor Application

The following pages shows how to configure a single VibWire-108-SDI12 in the Q-Log using the USB-SDI12-Pro media converter configured to operate using Com Port 8 in the Microsoft Windows operating system. The VibWire-108-SDI12 has ID = 0.

A single Vibrating Wire interface can be powered directly from the **USB-SDI12-Pro** media converter.

Each SDI-12 sensor or interface uses an individual ID number to identify it on a network.

In this worked example the VibWire-108-SDI12 has an ID = 0.

QLog Recorder Step-3	3		Log Recorder				• ×
QLog View Edit Help Configuration Select Start Logging able Stop Logging able Change Address show t ManualCommand identified Auto Assign save GSM GSM	the 'Scan for devices' option. tatus LED indicator will flash and few seconds the Q-Log screen will the VibWire-108-SDI12 has been ied.		g view Edit Heip evice List Variable List Formulas ist of devices 0 01013KEYNESCOVW108B020 2 3 5 5 5 7 8 9 0	WW108 - Concurent 8 VW + 8 Temp	ET	Setup (Confiq
H I I		Logg	ing N Stopped at 11:34:10				

24.1 Data Acquisition Rate

The data acquisition rate is shown in the 'Logging Configuration' Window to be set at 2 mins.

Use the pull down menu options to adjust this figure. The VibWire-108 takes approximately 30 seconds to scan 8 vibrating wire sensors.

24.2 Selecting the VibWire-108 data options.

The VibWire-108-SDI12 can be configured to use 1 to 8 vibrating wire sensors and return all of the data values. The maximum number of data values that can be returned is 16. There are a maximum of 8 frequency values and 8 temperature values.

To minimise the scan time of the VibWire-108 then the number of channels in use is set on the device itself. The default configuration of the VibWire-108 is 8 x Freq + 8 x Temp channels.

Step-4

Press the 'Setup' button and the 'Device Setup' Window will appear.

24.3 Store 8 x Frequency + 8 x Temperature Values

Select the Pull down menu options under the 'Configuration' title in the 'Device Setup' Window.

The number and type of data values that are stored to the data file are shown in the list.

Select the option '**VW108C 8 Freq 8 Temp**' and 16 values will be stored to the data file.

] Device Setup	5 ×
Device ID 0I!013KEYNESCO	DVW 108B020
Configuration	
Generic simple device	
Generic simple device VW108A VW108B	
VW 108C 16 VW 108C 8 Freq 8 Temp	E
VW108C 8 Freq 6 Temp VW108C 8 Freq 4 Temp	
VW 108C 8 Freq 2 Temp VW 108C 8 Freq No Temp VW 108C 6 Freq 6 Temp	-
	OK Cancel

Further Technical Information

The number of data values returned to Q-Log is set in the sensor or instrument. If the VibWire-108 is not physically configured to return 16 data values then Q-Log cannot store them. The '0' value will appear in any column in the data file when a value is missing.

To speed scanning of a series of vibrating wire sensors, the number of channels to be used can is set in the instrument.

It takes approximately 12 seconds to scan 4 channels of a VibWire-108. The instrument can only 4 x 2 = 8 values.

Data Table Positions

To position data into a specified column in the data file simply the start position using the pull down menu list available under the 'Start Column' in the 'Device Setup' Window.

The example above shows that the first data value from the VibWire-108-SDI12 is stored into column 'E'.

Depending on the configuration option chosen the number of data values to be stored is automatically assigned.

A VibWire-108-SDI12 with 4 channels in operation will start at column 'E' and finish at 'L'

25.0 Strain Gauge Application

The following pages details how to use the **NP-Strain-1** single channel SDI-12 interface card to undertake a strain gauge measurement.

A 1K Ohm 1/4 bridge strain gage is attached to the NP-Strain-1 card.

The device is calibrated for the measurements to be undertaken and set to give engineering output values in micro-strain.

The image opposite demonstrates how a $1\!\!\!/ 4$ bridge strain gauge is connected to the NP-Strain-1 interface card.

The image opposite demonstrates how to connect the NP-Strain-1 card to a PC for data recording operations.

The USB-SDI12-Pro media converter powers the NP-Strain-1 card directly from the computer USB port.

Part Numbers

USB-SDI12-Pro NP-Strain-1-SDI12	Media converter Single channel strain gauge SDI-12 interface
Further information	
USB-RS485-Pro	485 version media converter

Multiple NP-Strain-1 cards can be connected together on a network.

Each individual device will be identified on the network and data processed as described in the examples below.

Each individual card can be used

25.2 Bridge Circuit Options

The images below show how the different bridge options are connected to the NP Strain-1 card.

Full Bridge Strain Gauge

Example circuit shows a full (N=4) bridge strain gauge and thermistor

3 Wire Strain Gauge Interface

Example circuit shows a half bridge strain gauge (N=2) with 3 wire interface - reduces cable length effects.

$$\varepsilon = \frac{\mathbf{2}(e_o)}{(GF)\mathbf{3.3}}$$

1/2 Bridge Strain Gauge

Example circuit shows a half (N=2) bridge strain gauge and thermistor.

$$\varepsilon = \frac{\mathbf{2}(e_o)}{(GF)\mathbf{3.3}}$$

1/4 Bridge Strain gauge

Example circuit shows a quarter (N=1) bridge strain gauge and thermistor.

 $\varepsilon = \frac{4(e_o)}{(GF)3.3}$

Strain calculation using 1, 2 or 4 active arms

N	= 4 for full bridge 2 for half bridge 1 for quarter bridge	
	2 for half bridge 1 for quarter bridge	

- GF = Gage Factor
- E_x = Bridge Excitation = 3.3 V

 $\varepsilon = \frac{4(e_o)}{(N)(GF)E_x}$

- ge ε = strain
 - e₀ = Output Voltage
 - N = Number of effective arms

Bridge Zero Offset Correction

The NP-Strain-1 sensor does not zero correct the bridge and assumes the User will correct the error in post processing of the data.

Temperature coefficient of Gage Factor (TCGF)

This is the change of sensitivity of the device to strain with change in temperature. This can be compensated for in the calibration equations but it is recommended to be post process corrected in any data analysis.

Temperature Measurement

A precision thermistor is used by the NP-Strain-1 card to make local temperature measurements.

26.0 Worked Example - Setting the calibration factors into the NP-Strain-1 card

A $\frac{1}{2}$ bridge strain gauge with resistance Ro = 350 Ohm with GF = 2.0 Excitation voltage = 3.3 V D, Range = +/- 1500 micro-Strain is fitted to the **NP-Strain-1** interface card. It is observed that the bridge offset is 0.23 V DC with no load.

It is noted under test using a strain gage calibrator that at 1500 micro-Strain bridge voltage = 0.2345 V DC and at 200 micro-Strain the bridge voltage was measured at 0.23066 V DC.

NP-Strain-1 card is to be configured to return data values in engineering units.

Engineering Units

In order to have the NP-Strain-1 card return data in engineering units then the strain gage calibration factors have to be set.

The output from the strain gauge is presumed to be linear over range

For the example above the following factors will be used \mathbf{m} (gain) = 338.541 and Offset \mathbf{C} = -778.8802

 $Y_{out} = V_{in}$. 338.541 - 778.8802 where V_{in} is the bridge output voltage as measured by the NP-Strain-1 card.

The calibration factors are included as examples only.

26.1 Entering Configuration values using Q-LOG

1. Scan the chosen network for devices

Identify the NP-Strain-1 card to have the calibration factors installed.

2. Press the 'Config' button from the 'Device Calibration Window' shown below will appear.

NP-Strain-1 card with ID = 3

QLog Recorder QLog View Edit Help Select the 'Strain Gauge' option.

This operation ensures that the correct number and type of data is returned to the Q-LOG software.

3I13KEYNESCOSTRAIN027 Strain gauge Identifier string for the strain gauge card

'Device Calibration ' Window

Edit Sensor (Configuration		8 ×	
Cal Offset Cal Scale	Property	Value 0.000000 1.000000	tool Set	Enter -778.8802 - press 'Set' to confirm value - Offset value
				Enter 338.541 - Scale value
				Once the calibrations are set into the device then the
				NP-Strain-1 card will report data values in engineering units.
				25.2 Returned data values
				Once the calibration factors are set, then the command

SDI-12 command:3M! 3D0!RS-485 command:%3M! 3D0!(Keynes 485 intelligent instruments)

will return

Data: micro-Strain, Temp (Deg C)

27.0 Strain Gauge Application - Q-Log Formula Processing

The following example demonstrates how to use Q-Log software formula processing; to convert a direct strain gauge reading into engineering units.

The same procedure to convert a raw voltage reading into strain value, regardless to the device making the reading. Keynes Controls use the AquaDAT sensor interface, or the NP-Strain-1 card to make strain gauge readings.

Example

A $\frac{1}{2}$ bridge strain gauge with resistance Ro = 350 Ohm with GF = 2.0 Excitation voltage = 3.3 V D, Range = +/- 1500 micro-Strain is fitted to the **NP-Strain-1** interface card. It is observed that the bridge offset is 0.23 V DC with no load.

It is noted under test using a strain gage calibrator that at 1500 micro-Strain bridge voltage = 0.2345 V DC and at 200 micro-Strain the bridge voltage was measured at 0.23066 V DC.

For the example above the following factors will be used \mathbf{m} (gain) = 338.541 and Offset \mathbf{C} = -778.8802

How to determine the value of the calibration factors is not part of this example.

Formulae

Output μ -strain = V_{in} * 338.541 - 778.8802

where V_{in} is the war input voltage to the NP-Strain-1 card.

The output from the strain gauge is presumed to be linear over range

Temperature

Celsius to Fahrenheit: $(^{\circ}C \times 9/5) + 32 = ^{\circ}F$

Therefore the formula for Q-Log will be

Strain: [Cell D] =(O*338.541)-778.8802

Temp: [Cell E] =(P*9/5)+32

- converts temp in Deg C from NP-Strain-1 card to Deg F

27.0 Installation

QLog Quick Installation & Set-up Guide

The installation file for Q-Log consists of a single Zip file that is freely downloaded from the Keynes Controls Web Site

Download the latest copy of the software from

http://www.aquabat.net/QLOGFree/qlogv2.html

Open the Zip file to obtain access to the QLog setup file within. This is an automatic operation for most Microsoft Windows Operating systems.

Then

- Start the application QLogsetup
- Select components to install
- Click next
- · Change the destination directory if required
- Click Install
- · When completed click Close

IMPORTANT NOTE

The Q-Log software communicates to the intelligent sensors using a network connected to a PC using one of the media converters.

Q-Log supports both RS-485 and SDI-12 networks.

For any sensors to be identified then the Comm Port being used by the media converter has to be known.

Details of how to identify the Com Port in use are shown on Page 7. The actual Windows screens will differ slightly between the different versions of the Operating System but will be similar to what is shown.

🖞 QLOG Setup: Installation Op	otions
Check the components you don't want to install.	ou want to install and uncheck the components Click Next to continue.
Select components to install:	 QLOG (required) ✓ Start Menu Shortcuts
Space required: 14.2MB	
Cancel Nullsoft Instal	System v2,46

The default Q-Log installation Window.

Select 'Next' to complete the installation.

QLog will now be available from your START menu

Starting up first time

Select START\Qlog

11-4-6		i i onnaide	Addimicered		
0	ievices				
1					
2					
3					
4					
5					
6					
7					
8					
9					

The default Q-Log Window as shown opposite will appear.

There are currently no instruments identified by the software.

On the QLog window select QLog\Configuration

Configuration		
Scan for devices	ormulas Alarm Levels	
Start Logging		
Stop Logging		
Change Address		
ManualCommand		
Auto Assign		
Save		
GSM		
Import/Export		
, mport suport		
8		
9		

The following Window will appear

Device List Variable L	I Logging Configuration	
List of devices 0 1	COM Port 14 COM 14 -	
2 3	Logging Interval 60 Seconds	
4 5	Fie Name	
6 7	New	
8 9	Mode SDI-12 V	
	OK Cancel	

Com Port

Enter the COM Port for the USB media converter used to connect the sensors to the PC.

In this example the Com Port No is shown as 14.

Logging Rate

Select the desired sample rate from the pull down menu options

The example shows a sample rate of 60 seconds

File Name

Enter the file name to store the results into the box provided.

Mode

Ensure that the correct network media converter type is assigned.

SDI-12 or RS-485

In this example the SDI-12 media converter is shown being used.

Using the Logging Configuration Window select the following

- 1. COM Port. (The drop down box will provide a list of ports. To determine which one your devices are using select 'START\Control Panel\System' then click on 'Device Manager' and 'Com Ports'. As there may be several Com Ports in use on your computer verify your devices connection by disconnecting and reconnecting the USB lead. The Com Port number in question will disappear and then reappear again in the list)
- 2. Ignore 'Logging Interval' for now, this can be adjusted later.
- 3. Enter a file name for Data Logging and click 'New'
- 4. Select a mode from the drop down list, e.g. SDI-12 or RS485 for locally connected devices.
- 5. Click OK

Next select QLog\Scan for devices.

The list thus produced will allow setting up of relevant parameters for each device.

This completes the initial start-up procedure.

The relevant manuals for each device now needs to be read in conjunction with the QLog main manual for device specific set up and configuration.

Installation Errors

The most common installation errors are:

1. Installation of Q-Log using standard User Account instead of 'Admin Account'